Bibliography

[1]

Aidan P Thompson, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown, Paul S Crozier, Pieter J in't Veld, Axel Kohlmeyer, Stan G Moore, Trung Dac Nguyen, and others. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications, 271:108171, 2022.

[2]

William Humphrey, Andrew Dalke, and Klaus Schulten. VMD: visual molecular dynamics. Journal of molecular graphics, 14(1):33–38, 1996.

[3]

Guido van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[4]

Naveen Michaud-Agrawal, Elizabeth J Denning, Thomas B Woolf, and Oliver Beckstein. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. Journal of computational chemistry, 32(10):2319–2327, 2011.

[5]

Richard J Gowers, Max Linke, Jonathan Barnoud, Tyler JE Reddy, Manuel N Melo, Sean L Seyler, Jan Domanski, David L Dotson, Sébastien Buchoux, Ian M Kenney, and others. MDAnalysis: a Python package for the rapid analysis of molecular dynamics simulations. In Proceedings of the 15th python in science conference, volume 98, 105. SciPy Austin, TX, 2016.

[6]

J. D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.

[7]

Henrik Andersen Sveinsson. LAMMPS logfile reader. https://github.com/henriasv/lammps-logfile, 2021.

[8]

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Elsevier, 2023.

[9]

Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford university press, 2017.

[10]

Jean-Louis Barrat and Jean-Pierre Hansen. Basic concepts for simple and complex liquids. Cambridge University Press, 2003.

[11]

Jean-Pierre Hansen and Ian Ranald McDonald. Theory of simple liquids: with applications to soft matter. Academic press, 2013.

[12]

T Schneider and E Stoll. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Physical Review B, 17(3):1302, 1978.

[13]

Xipeng Wang, Simón Ramírez-Hinestrosa, Jure Dobnikar, and Daan Frenkel. The lennard-jones potential: when (not) to use it. Physical Chemistry Chemical Physics, 22(19):10624–10633, 2020.

[14]

Johann Fischer and Martin Wendland. On the history of key empirical intermolecular potentials. Fluid Phase Equilibria, 573:113876, 2023.

[15]

Hendrik Antoon Lorentz. Ueber die anwendung des satzes vom virial in der kinetischen theorie der gase. Annalen der physik, 248(1):127–136, 1881.

[16]

Daniel Berthelot. Sur le mélange des gaz. Compt. Rendus, 126(3):15, 1898.

[17]

Magnus Rudolph Hestenes, Eduard Stiefel, and others. Methods of conjugate gradients for solving linear systems. Volume 49. NBS Washington, DC, 1952.

[18]

Steven J Stuart, Alan B Tutein, and Judith A Harrison. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of chemical physics, 112(14):6472–6486, 2000.

[19]

Axel Kohlmeyer and Josh Vermaas. TopoTools: Release 1.9. 2021. URL: https://doi.org/10.5281/zenodo.598373.

[20]

William L Jorgensen and Julian Tirado-Rives. The OPLS potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. Journal of the American Chemical Society, 110(6):1657–1666, 1988.

[21]

William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society, 118(45):11225–11236, 1996.

[22]

Herman JC Berendsen, JPM Postma, Wilfred F van Gunsteren, ARHJ DiNola, and Jan R Haak. Molecular dynamics with coupling to an external bath. The Journal of chemical physics, 81(8):3684–3690, 1984.

[23]

Jirasak Wong-Ekkabut and Mikko Karttunen. The good, the bad and the user in soft matter simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(10):2529–2538, 2016.

[24]

Nathan Schmid, Andreas P Eichenberger, Alexandra Choutko, Sereina Riniker, Moritz Winger, Alan E Mark, and Wilfred F van Gunsteren. Definition and testing of the gromos force-field versions 54a7 and 54b7. European biophysics journal, 40:843–856, 2011.

[25]

Yujie Wu, Harald L Tepper, and Gregory A Voth. Flexible simple point-charge water model with improved liquid-state properties. The Journal of chemical physics, 2006.

[26]

Brock A Luty and Wilfred F van Gunsteren. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions. The Journal of Physical Chemistry, 100(7):2581–2587, 1996.

[27]

Susanne Liese, Manuel Gensler, Stefanie Krysiak, Richard Schwarzl, Andreas Achazi, Beate Paulus, Thorsten Hugel, Jürgen P Rabe, and Roland R Netz. Hydration effects turn a highly stretched polymer from an entropic into an energetic spring. ACS nano, 11(1):702–712, 2017.

[28]

Herman JC Berendsen, James PM Postma, Wilfred F van Gunsteren, and Jan Hermans. Interaction models for water in relation to protein hydration. In Intermolecular forces: proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry held in jerusalem, israel, april 13–16, 1981, 331–342. Springer, 1981.

[29]

Shuichi Nosé. A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1):511–519, 1984.

[30]

William G Hoover. Canonical dynamics: equilibrium phase-space distributions. Physical review A, 31(3):1695, 1985.

[31]

Glenn J Martyna, Douglas J Tobias, and Michael L Klein. Constant pressure molecular dynamics algorithms. The Journal of chemical physics, 101(5):4177–4189, 1994.

[32]

Alpeshkumar K Malde, Le Zuo, Matthew Breeze, Martin Stroet, David Poger, Pramod C Nair, Chris Oostenbrink, and Alan E Mark. An automated force field topology builder (ATB) and repository: version 1.0. Journal of chemical theory and computation, 7(12):4026–4037, 2011.

[33]

Chris Oostenbrink, Alessandra Villa, Alan E Mark, and Wilfred F van Gunsteren. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13):1656–1676, 2004.

[34]

Marshall Fixman. Radius of Gyration of Polymer Chains. The Journal of Chemical Physics, 36(2):306–310, 1962.

[35]

Jose LF Abascal and Carlos Vega. A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of chemical physics, 2005.

[36]

Alexander D MacKerell Jr, Nilesh Banavali, and Nicolas Foloppe. Development and current status of the CHARMM force field for nucleic acids. Biopolymers: original Research on biomolecules, 56(4):257–265, 2000.

[37]

Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational physics, 23(3):327–341, 1977.

[38]

Hans C Andersen. Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of computational Physics, 52(1):24–34, 1983.

[39]

Simon Gravelle, Catherine Kamal, and Lorenzo Botto. Violations of Jeffery's theory in the dynamics of nanographene in shear flow. Physical Review Fluids, 6(3):034303, 2021.

[40]

Amanuel Wolde-Kidan and Roland R. Netz. Interplay of Interfacial Viscosity, Specific-Ion, and Impurity Adsorption Determines Zeta Potentials of Phospholipid Membranes. Langmuir, 37(28):8463–8473, July 2021.

[41]

Adri CT van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001.

[42]

Chenyu Zou and Adri van Duin. Investigation of complex iron surface catalytic chemistry using the ReaxFF reactive force field method. Jom, 64:1426–1437, 2012.

[43]

P Vashishta, Rajiv K Kalia, José P Rino, and Ingvar Ebbsjö. Interaction potential for SiO2: a molecular-dynamics study of structural correlations. Physical Review B, 41(17):12197, 1990.

[44]

Anthony K Rappe and William A Goddard III. Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95(8):3358–3363, 1991.

[45]

Simon Gravelle and Jacques Dumais. A multi-scale model for fluid transport through a bio-inspired passive valve. The Journal of Chemical Physics, 2020.

[46]

Johannes Kästner. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(6):932–942, 2011.

[47]

Michael A Wilson and Andrew Pohorille. Adsorption and solvation of ethanol at the water liquid- vapor interface: a molecular dynamics study. The Journal of Physical Chemistry B, 101(16):3130–3135, 1997.

[48]

Dmitrii E Makarov. Computer simulations and theory of protein translocation. Accounts of chemical research, 42(2):281–289, 2009.

[49]

Simon Gravelle and Lorenzo Botto. Adsorption of single and multiple graphene-oxide nanoparticles at a water–vapor interface. Langmuir, 37(45):13322–13330, 2021.

[50]

John D Weeks, David Chandler, and Hans C Andersen. Role of repulsive forces in determining the equilibrium structure of simple liquids. The Journal of chemical physics, 54(12):5237–5247, 1971.

[51]

Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen, and Peter A Kollman. The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method. Journal of computational chemistry, 13(8):1011–1021, 1992.

[52]

Alan Grossfield. An implementation of WHAM: the weighted histogram analysis method version 2.0.10. URL: http://membrane.urmc.rochester.edu/content/wham/.

[53]

Augustin Cauchy and others. Méthode générale pour la résolution des systemes d'équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.