Bibliography

[1]

William L. Jorgensen, David S. Maxwell, and Julian Tirado-Rives. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. Journal of the American Chemical Society, 118(45):11225–11236, 1996.

[2]

Steven J Stuart, Alan B Tutein, and Judith A Harrison. A reactive potential for hydrocarbons with intermolecular interactions. The Journal of chemical physics, 112(14):6472–6486, 2000.

[3]

Jacob R Gissinger, Ilia Nikiforov, Yaser Afshar, Brendon Waters, Moon-ki Choi, Daniel S Karls, Alexander Stukowski, Wonpil Im, Hendrik Heinz, Axel Kohlmeyer, and others. Type label framework for bonded force fields in lammps. The Journal of Physical Chemistry B, 128(13):3282–3297, 2024.

[4]

Jose LF Abascal and Carlos Vega. A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of chemical physics, 2005.

[5]

Adri CT van Duin, Siddharth Dasgupta, Francois Lorant, and William A Goddard. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A, 105(41):9396–9409, 2001.

[6]

Daan Frenkel and Berend Smit. Understanding molecular simulation: from algorithms to applications. Elsevier, 2023.

[7]

Michael P Allen and Dominic J Tildesley. Computer simulation of liquids. Oxford university press, 2017.

[8]

Jean-Louis Barrat and Jean-Pierre Hansen. Basic concepts for simple and complex liquids. Cambridge University Press, 2003.

[9]

Jean-Pierre Hansen and Ian Ranald McDonald. Theory of simple liquids: with applications to soft matter. Academic press, 2013.

[10]

Guido van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en Informatica Amsterdam, 1995.

[11]

J. D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.

[12]

William Humphrey, Andrew Dalke, and Klaus Schulten. VMD: visual molecular dynamics. Journal of molecular graphics, 14(1):33–38, 1996.

[13]

Alexander Stukowski. Visualization and analysis of atomistic simulation data with ovito–the open visualization tool. Modelling and simulation in materials science and engineering, 18(1):015012, 2009.

[14]

Simon Gravelle, Jacob R Gissinger, and Axel Kohlmeyer. A set of tutorials for the lammps simulation package. arXiv preprint arXiv:2503.14020, 2025.

[15]

Xipeng Wang, Simón Ramírez-Hinestrosa, Jure Dobnikar, and Daan Frenkel. The lennard-jones potential: when (not) to use it. Physical Chemistry Chemical Physics, 22(19):10624–10633, 2020.

[16]

Johann Fischer and Martin Wendland. On the history of key empirical intermolecular potentials. Fluid Phase Equilibria, 573:113876, 2023.

[17]

Magnus Rudolph Hestenes, Eduard Stiefel, and others. Methods of conjugate gradients for solving linear systems. Volume 49. NBS Washington, DC, 1952.

[18]

T Schneider and E Stoll. Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Physical Review B, 17(3):1302, 1978.

[19]

Jirasak Wong-Ekkabut and Mikko Karttunen. The good, the bad and the user in soft matter simulations. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858(10):2529–2538, 2016.

[20]

Axel Kohlmeyer and Josh Vermaas. TopoTools: Release 1.9. 2021. URL: https://doi.org/10.5281/zenodo.598373.

[21]

Shuichi Nosé. A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 81(1):511–519, 1984.

[22]

William G Hoover. Canonical dynamics: equilibrium phase-space distributions. Physical review A, 31(3):1695, 1985.

[23]

Nathan Schmid, Andreas P Eichenberger, Alexandra Choutko, Sereina Riniker, Moritz Winger, Alan E Mark, and Wilfred F van Gunsteren. Definition and testing of the gromos force-field versions 54a7 and 54b7. European biophysics journal, 40:843–856, 2011.

[24]

Yujie Wu, Harald L Tepper, and Gregory A Voth. Flexible simple point-charge water model with improved liquid-state properties. The Journal of chemical physics, 2006.

[25]

Brock A Luty and Wilfred F van Gunsteren. Calculating electrostatic interactions using the particle-particle particle-mesh method with nonperiodic long-range interactions. The Journal of Physical Chemistry, 100(7):2581–2587, 1996.

[26]

Susanne Liese, Manuel Gensler, Stefanie Krysiak, Richard Schwarzl, Andreas Achazi, Beate Paulus, Thorsten Hugel, Jürgen P Rabe, and Roland R Netz. Hydration effects turn a highly stretched polymer from an entropic into an energetic spring. ACS nano, 11(1):702–712, 2017.

[27]

Herman JC Berendsen, James PM Postma, Wilfred F van Gunsteren, and Jan Hermans. Interaction models for water in relation to protein hydration. In Intermolecular forces: proceedings of the fourteenth Jerusalem symposium on quantum chemistry and biochemistry held in jerusalem, israel, april 13–16, 1981, 331–342. Springer, 1981.

[28]

Paul P Ewald. Die berechnung optischer und elektrostatischer gitterpotentiale. Annalen der physik, 369(3):253–287, 1921.

[29]

Glenn J Martyna, Douglas J Tobias, and Michael L Klein. Constant pressure molecular dynamics algorithms. The Journal of chemical physics, 101(5):4177–4189, 1994.

[30]

Alpeshkumar K Malde, Le Zuo, Matthew Breeze, Martin Stroet, David Poger, Pramod C Nair, Chris Oostenbrink, and Alan E Mark. An automated force field topology builder (ATB) and repository: version 1.0. Journal of chemical theory and computation, 7(12):4026–4037, 2011.

[31]

Chris Oostenbrink, Alessandra Villa, Alan E Mark, and Wilfred F van Gunsteren. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. Journal of computational chemistry, 25(13):1656–1676, 2004.

[32]

Marshall Fixman. Radius of Gyration of Polymer Chains. The Journal of Chemical Physics, 36(2):306–310, 1962.

[33]

Sachini P Kadaoluwa Pathirannahalage, Nastaran Meftahi, Aaron Elbourne, Alessia CG Weiss, Chris F McConville, Agilio Padua, David A Winkler, Margarida Costa Gomes, Tamar L Greaves, Tu C Le, and others. Systematic comparison of the structural and dynamic properties of commonly used water models for molecular dynamics simulations. Journal of Chemical Information and Modeling, 61(9):4521–4536, 2021.

[34]

Jean-Paul Ryckaert, Giovanni Ciccotti, and Herman JC Berendsen. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational physics, 23(3):327–341, 1977.

[35]

Hans C Andersen. Rattle: a “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of computational Physics, 52(1):24–34, 1983.

[36]

Reginald Mills. A remeasurement of the self-diffusion coefficients of sodium ion in aqueous sodium chloride solutions. Journal of the American Chemical Society, 77(23):6116–6119, 1955.

[37]

Simon Gravelle, Catherine Kamal, and Lorenzo Botto. Violations of Jeffery's theory in the dynamics of nanographene in shear flow. Physical Review Fluids, 6(3):034303, 2021.

[38]

Amanuel Wolde-Kidan and Roland R. Netz. Interplay of Interfacial Viscosity, Specific-Ion, and Impurity Adsorption Determines Zeta Potentials of Phospholipid Membranes. Langmuir, 37(28):8463–8473, 2021.

[39]

Chenyu Zou and Adri van Duin. Investigation of complex iron surface catalytic chemistry using the ReaxFF reactive force field method. Jom, 64:1426–1437, 2012.

[40]

P Vashishta, Rajiv K Kalia, José P Rino, and Ingvar Ebbsjö. Interaction potential for SiO2: a molecular-dynamics study of structural correlations. Physical Review B, 41(17):12197, 1990.

[41]

Anthony K Rappe and William A Goddard III. Charge equilibration for molecular dynamics simulations. The Journal of Physical Chemistry, 95(8):3358–3363, 1991.

[42]

Marialore Sulpizi, Marie-Pierre Gaigeot, and Michiel Sprik. The silica–water interface: how the silanols determine the surface acidity and modulate the water properties. Journal of chemical theory and computation, 8(3):1037–1047, 2012.

[43]

Raffaele Guido Della Valle and Hans C Andersen. Molecular dynamics simulation of silica liquid and glass. The Journal of chemical physics, 97(4):2682–2689, 1992.

[44]

Simon Gravelle and Jacques Dumais. A multi-scale model for fluid transport through a bio-inspired passive valve. The Journal of Chemical Physics, 2020.

[45]

Johannes Kästner. Umbrella sampling. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1(6):932–942, 2011.

[46]

Michael A Wilson and Andrew Pohorille. Adsorption and solvation of ethanol at the water liquid- vapor interface: a molecular dynamics study. The Journal of Physical Chemistry B, 101(16):3130–3135, 1997.

[47]

Dmitrii E Makarov. Computer simulations and theory of protein translocation. Accounts of chemical research, 42(2):281–289, 2009.

[48]

Simon Gravelle and Lorenzo Botto. Adsorption of single and multiple graphene-oxide nanoparticles at a water–vapor interface. Langmuir, 37(45):13322–13330, 2021.

[49]

Philip Loche, Douwe J Bonthuis, and Roland R Netz. Molecular dynamics simulations of the evaporation of hydrated ions from aqueous solution. Communications Chemistry, 5(1):55, 2022.

[50]

Ardalan Hayatifar, Simon Gravelle, Beatriz D Moreno, Valerie A Schoepfer, and Matthew BJ Lindsay. Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics. Geochemical Transactions, 25(1):10, 2024.

[51]

John D Weeks, David Chandler, and Hans C Andersen. Role of repulsive forces in determining the equilibrium structure of simple liquids. The Journal of chemical physics, 54(12):5237–5247, 1971.

[52]

Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen, and Peter A Kollman. The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method. Journal of computational chemistry, 13(8):1011–1021, 1992.

[53]

Shankar Kumar, John M Rosenberg, Djamal Bouzida, Robert H Swendsen, and Peter A Kollman. Multidimensional free-energy calculations using the weighted histogram analysis method. Journal of Computational Chemistry, 16(11):1339–1350, 1995.

[54]

Alan Grossfield. An implementation of WHAM: the weighted histogram analysis method version 2.0.10. URL: http://membrane.urmc.rochester.edu/content/wham/.

[55]

Jacob R. Gissinger, Benjamin D. Jensen, and Kristopher E. Wise. Modeling chemical reactions in classical molecular dynamics simulations. Polymer, 128:211–217, 2017.

[56]

Jacob R Gissinger, Benjamin D Jensen, and Kristopher E Wise. Reacter: a heuristic method for reactive molecular dynamics. Macromolecules, 53(22):9953–9961, 2020.

[57]

Jacob R Gissinger, Benjamin D Jensen, and Kristopher E Wise. Molecular modeling of reactive systems with reacter. Computer Physics Communications, 304:109287, 2024.

[58]

Huai Sun. Compass: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 102(38):7338–7364, 1998.

[59]

Augustin Cauchy and others. Méthode générale pour la résolution des systemes d'équations simultanées. Comp. Rend. Sci. Paris, 25(1847):536–538, 1847.